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In the activated B-cell–like (ABC) subtype of diffuse large B-cell lym-
phoma (DLBCL), NF-κB activity is essential for viability of the malig-
nant cells and is sustained by constitutive activity of IκB kinase (IKK)
in the cytoplasm. Here, we report an unexpected role for the bro-
modomain and extraterminal domain (BET) proteins BRD2 and BRD4
in maintaining oncogenic IKK activity in ABC DLBCL. IKK activity was
reduced by small molecules targeting BET proteins as well as by
genetic knockdown of BRD2 and BRD4 expression, thereby inhibit-
ing downstream NF-κB–driven transcriptional programs and killing
ABC DLBCL cells. Using a high-throughput platform to screen for
drug–drug synergy, we observed that the BET inhibitor JQ1 com-
bined favorably with multiple drugs targeting B-cell receptor signal-
ing, one pathway that activates IKK in ABC DLBCL. The BTK kinase
inhibitor ibrutinib, which is in clinical development for the treat-
ment of ABC DLBCL, synergized strongly with BET inhibitors in kill-
ing ABC DLBCL cells in vitro and in a xenograft mouse model. These
findings provide a mechanistic basis for the clinical development of
BET protein inhibitors in ABC DLBCL, particularly in combination
with other modulators of oncogenic IKK signaling.
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The activated B-cell like subtype (ABC) of diffuse large B-cell
lymphoma (DLBCL) has an aggressive clinical course com-

pared with other DLBCL subtypes, with an overall survival of
only 40% with current multidrug chemotherapies (1, 2). In re-
cent years, detailed genetic and functional genomic analyses
unveiled the key oncogenic mechanisms that sustain the ag-
gressiveness of this subtype. Notably, all ABC DLBCLs rely on
constitutive NF-κB activation for survival (3). Various oncogenic
events converge on NF-κB to promote lymphomagenesis. About
10% of ABC DLBCL tumors have activating mutations affecting
CARD11, a scaffolding protein required for the assembly of the
CARD11–BCL10–MALT1 (CBM) complex. Mutant CARD11
proteins spontaneously generate cytoplasmic CBM aggregates
that drive constitutive NF-κB activity (4). ABC DLBCL tumors
with wild-type CARD11 use other mechanisms to activate NF-
κB. In 20% of cases, signals emanating from the B-cell receptor
(BCR) are augmented by somatically acquired mutations tar-
geting the BCR subunits CD79A and CD79B (5). In 39% of
ABC DLBCLs, NF-κB is activated by somatic mutations tar-
geting MyD88, an adaptor protein in the Toll-like receptor
(TLR) pathway (6). In normal B cells, stimulus-dependent en-
gagement of the BCR and MyD88 pathways activates IκB kinase
(IKK), which phosphorylates ΙκBα, thereby promoting its deg-
radation and allowing NF-κB transcription factors to enter the
nucleus and activate a distinctive set of target genes. By contrast,
ABC DLBCL cells become addicted to constitutive activity of
IKK such that its inhibition is lethal (7). Recent therapeutic
efforts to target oncogenic signaling in ABC DLBCL have focused

on ibrutinib, a selective inhibitor of the kinase BTK that transmits
signals from the BCR to the NF-κB pathway (5).
Bromodomain and extraterminal domain (BET) proteins are

a family of epigenetic adaptors that bind to acetylated chromatin
and promote RNA Pol2-dependent transcription (8). Proposed
mechanisms underlying BET protein transcriptional activation
include recruitment of the transcriptional elongation complex
pTEFb, chromatin remodeling, and histone chaperone activity
(9, 10). Recently, different small-molecule inhibitors of BET
proteins have been developed that competitively interfere with
BET protein binding to acetylated lysine residues of histones (11,
12). These molecules are highly toxic to various cancer cell lines,
including models of Burkitt lymphoma, multiple myeloma, acute
myelogenous leukemia (AML), and MLL-rearranged leukemia
(13–16). In multiple myeloma, AML, and Burkitt lymphoma, the
toxicity of the BET inhibitor JQ1 appears to stem from its ability
to regulate the oncogene MYC. Our interest in this class of
small molecules was piqued by the demonstration that the BET
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inhibitor I-BET could down-regulate expression of NF-κB target
genes in macrophages (11).
Recent studies correlated the ability of BET inhibitors to down-

regulate gene expression to the presence of nearby superenhancers
(SEs), which are large clusters of regulatory genomic regions that
are enriched for the binding of BET proteins, mediator complex,
and master regulators (17). A recent study used BET inhibition to
identify SEs in DLBCL and suggested that down-modulation of
lineage-specific factors was the reason behind the toxicity of these
compounds (18). This study did not focus on potential differences in
the mechanism of JQ1 toxicity between ABC and germinal center
B-cell (GCB) DLBCL, which rely on distinct regulatory pathways
for survival (2). In the present study, we investigated the ability of
BET inhibitors to inhibit oncogenic NF-κB signaling in ABC
DLBCL. Mechanistic studies unexpectedly uncovered a profound
influence of BET proteins on cytoplasmic signaling through IKK
activity in ABC DLBCL.

Results
BET Proteins Sustain ABC DLBCL Cell Survival.We treated a panel of
nine ABC DLBCL lines with the BET inhibitor JQ1 and ob-
served a strong, dose-dependent toxicity in all lines: the average
50% inhibition concentration (IC50) ranged from 56 to 243 nM,
which was on a par with the 101 nM IC50 observed with the
multiple myeloma cell line LP1, which is known to be sensitive to
JQ1 (Fig. 1A) (13). In addition to ABC DLBCL, JQ1 was toxic to
cell line models of Burkitt lymphoma and GCB DLBCL with
comparable IC50 values (Fig. S1A). Three structurally distinct
BET inhibitors—JQ1, CPI203, and IBET-151—yielded similar
toxicity profiles, suggesting on-target inhibition of BET proteins
(Fig. S1B). JQ1 treatment of ABC DLBCL cells invoked a time-
and dose-dependent increase in the apoptotic cell fraction, as
measured by flow cytometry for active Caspase 3 and cleaved
Parp1, suggesting that reduced cell survival is a prominent factor
in JQ1 toxicity for these cells (Fig. 1B and Fig. S1C).
To investigate which BET proteins are essential for ABC

DLBCL survival, we evaluated the toxicity of short hairpin RNAs
(shRNAs) targeting BRD2 and BRD4, the two BET family
members most highly expressed in DLBCL by gene expression
profiling (Fig. S1 D and E). Inducible expression of BRD2 and
BRD4 shRNA constructs coexpressing GFP in ABC DLBCL
cells produced a time-dependent depletion of GFP+, shRNA-
expressing cells (Fig. 1C and Fig. S1F). Moreover, knockdown of
BRD2 and BRD4 cooperated with JQ1 in the killing of ABC
DLBCL cells, supporting the conclusion that both BRD2 and
BRD4 are required to maintain ABC DLBCL viability. Ectopic
expression of BRD2 and BRD4 was able to rescue ABC DLBCL
cells from the toxicity of their respective shRNAs, demonstrating
the specificity of the shRNAs (Fig. S1G).

Mechanism of JQ1 Toxicity in ABC DLBCLs. To further define the
molecular basis of JQ1 toxicity in ABC DLBCL, we performed
ChIP-seq to identify BRD4 and RNA polymerase II (Pol2) ge-
nomic binding sites in the presence or absence of JQ1. We fo-
cused on regions in the vicinity of protein-coding genes (window
from −15 kb relative to the transcriptional start site and in-
cluding the entire gene body; Materials and Methods). In HBL1
ABC DLBCL cells and in LP1 multiple myeloma cells, we ob-
served BRD4 binding near the majority of genes (HBL1: n =
13,976; LP1: n = 13,640 of 23,505 RefSeq genes; Fig. S2A). JQ1
treatment globally impaired BRD4 binding, as expected (Fig.
2A). For each cell line, we defined a set of 500 genes that had the
most significant decrease in BRD4 binding following JQ1
treatment (promoter, upstream, and gene body locations com-
bined) and performed gene set enrichment analysis using a da-
tabase of gene expression signatures that reflect signaling and
regulatory processes in normal and malignant B cells (19). The
top enriched signatures in HBL1 cells included a set of genes

highly expressed in ABC DLBCL, whereas LP1-enriched sig-
natures reflected key transcriptional programs of multiple mye-
loma biology (Fig. S2B and Table S1). ChIP-seq confirmed MYC
as a BRD4 target in both cell types, even though the degree of
BRD4 binding toMYC and the decrease in elongating RNA Pol2
following JQ1 treatment were clearly more pronounced in the
myeloma line LP1 (Fig. S2C). To extend these findings, we
performed a time course analysis of gene expression changes
following JQ1 treatment of HBL1 and LP1 cells. Hierarchical
clustering analysis revealed that a significant fraction of the JQ1–
down-regulated genes were affected in an ABC DLBCL-specific
manner (Fig. 2B and Fig. S2D). Consistent with ChIP-seq results,
a signature of MYC target genes was the top enriched signature
among genes down-regulated in the multiple myeloma line LP1,
whereas a smaller enrichment was seen in the ABC DLBCL
line HBL1 (Fig. S2E). Of note, shRNA-mediated knockdown of
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Fig. 1. JQ1 toxicity in ABC DLBCL. (A) Viability of ABC DLBCL cell lines after
JQ1 treatment, as assessed by MTS assay at day 4 posttreatment. The multiple
myeloma line LP1 is shown as positive control for toxicity. (B) Apoptotic cells
(percentage of total), as assessed by a dual intracellular-flow assay for active
Caspase 3 and cleaved Parp-1, after JQ1 treatment for the indicated times.
See Fig. S1C for a representative staining. (C) Shown is the fraction of live,
shRNA-expressing (GFP+) cells over time after shRNA induction, compared
with the day 0 preinduction values. Error bars represent SEM of triplicates.
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MYC did not synergize with JQ1 in the killing of ABC DLBCL
(Fig. S2F), and ectopic expression of MYC failed to rescue ABC
DLBCL from the toxicity of BRD2 and BRD4 shRNAs (Fig.
S2G). These findings suggest that the toxicity induced by BET
protein inhibition in ABC DLBCL is likely to be multifactorial.
Indeed, the enriched signatures in the HBL1 ABC DLBCL in-
cluded different gene sets that define the transcriptional output
of critical ABC DLBCL signaling pathways, reflecting oncogenic
MYD88 signaling (MYD88 signatures), chronic active BCR sig-
naling (BCR signatures), and constitutive expression of NF-κB
target genes (NFkB signatures) (Fig. 2C; see Table S2 for details).
Genes specifically down-regulated by JQ1 in ABC DLBCL in-
cluded IL6 and IL10, two bona fide NF-κB targets that promote
malignancy via autocrine JAK/STAT signaling (20).
JQ1 treatment resulted in dose-dependent decrease of NF-κB

activity in four different ABC DLBCLs lines, as assessed by an
NF-κB–dependent luciferase reporter (Fig. 2D). The magnitude
of NF-κB inhibition was similar to that produced by treatment
with MLN120b, a specific IKKβ inhibitor (7). Similarly, in-
duction of a BRD4 shRNA resulted in time-dependent decrease
in NF-κB–dependent transcription (Fig. 2E). Finally, gene ex-
pression profiling performed after BRD2 or BRD4 knockdown
confirmed strong inhibition of MYD88, BCR, and NF-κB-
related gene signatures, whereas only a modest enrichment for
MYC target genes was observed (Fig. 2F and Table S3).

BET Protein Inhibition Attenuates IKKβ Signaling in ABC DLBCL. In our
effort to dissect the effect of JQ1 on the NF-κB pathway, we
observed a strong decrease in phosphorylated IKKβ (p-IKK) fol-
lowing JQ1 treatment in four different ABC DLBCL lines, in-
dicating inhibition of IKK activity (Fig. 3A). As expected, no
detectable p-IKK was observed in GCB DLBCL lines that do not
rely on constitutive NF-κB for survival. Consistent with decreased
IKK signaling, accumulation of IκBα was observed in all of the

ABC DLBCL lines treated with JQ1, whereas no effects on IκBα
protein levels were observed in GCB DLBCL lines. Two struc-
turally distinct BET inhibitors, JQ1 and IBET-151, stabilized IκBα
in ABC DLBCL lines to a similar extent, suggesting that this effect
was due to on-target inhibition of BET protein function (Fig. 3B).
JQ1 treatment caused a time-dependent accumulation of total

IκBα beginning after 1 h (Fig. 3 C and D). Quantitative PCR for
IκBα mRNA revealed an approximately twofold to threefold in-
duction beginning after 1 h of JQ1 treatment, but this effect waned
by 6 h (Fig. 3D). Notably, IκBα protein levels increased more
dramatically (approximately fivefold to eightfold) following JQ1
treatment and were maintained at later time points (9–12 h) when
IκBα mRNA levels had returned to baseline. During the same
time course, p-IKK levels began to decrease detectably at 3 h and
continued to drop at later time points. Thus, although the in-
duction of IκBα mRNAmay contribute to the rise of IκBα protein
at early time points, we surmised that the continued rise in IκBα
protein at later times could be due to a decrease in IKKβ activity.
To measure IKKβ activity quantitatively, we used a reporter

system in which IκBα is fused in frame to firefly luciferase (7).
Inhibition of IKKβ activity causes an increase in luciferase ac-
tivity, due to increased stability of the fusion reporter. JQ1
treatment induced a time- and dose-dependent stabilization of
the IκBα-luciferase (Fig. 3E), as did knockdown of BRD2,
BRD4, or both BET proteins together (Fig. 3F). To investigate
further the role of IKK inhibition in JQ1-induced toxicity, we
examined the effects of ectopic expression of wild-type IKKβ or
of a dominant-active IKKβ isoform (IKKβ EE). As expected,
dominant-active IKKβ decreased IκBα-luciferase levels in ABC
DLBCL cells (Fig. S3 A and B). When these cells were treated
with JQ1, the dominant-active IKKβ EE isoform blunted the rise
in IκBα-luciferase levels, whereas wild-type IKKβ had only
a modest effect (Fig. 3G). Consistent with these findings, the
dominant-active IKKβ EE isoform was able to partially rescue

0 20 40 60 80 100

DMSO JQ1 DMSO JQ1  IL10 

 IL6

H
B

L1
 

LP
1 

 -2.00 
 -1.33 
 -0.67 
 0.00 
 0.67 
 1.33 
 2.00 

 MYC

 B
R

D
4 

B
ou

nd
 R

ef
S

eq
 

HBL1BRD4 LP1 BRD4 

A Tag density B

HBL1TMD8 LY3 LY10

2

4

6

8

1.0

1.2

0

N
F

-κ
B

-lu
ci

fe
ra

se
 a

ct
iv

ity
 

DMSO
JQ1 100 nM
JQ1 500 nM
MLN120b 20 μM

D
HBL1 TMD8

d0
d2
d3
d4

Ctrl BRD4 Ctrl BRD4

E

-2 +20

7
6
5
4
3
2
1
0

8
9

10

E
nr

ic
hm

en
t R

at
io

ABC DLBCL
Myeloma

C

M
Y

D
88

-3

M
Y

D
88

-4

M
Y

D
88

-2

B
C

R
-2

B
C

R
-1

N
F

kB
-9

N
F

kB
-1

0

M
Y

D
88

-1

18

8
6
4
2
0

22
20

10

shBRD2 
shBRD4
shBRD2+4

12
14
16

E
nr

ic
hm

en
t R

at
io

F

M
Y

D
88

-3
M

Y
D

88
-2

M
Y

D
88

-1
B

C
R

-2

N
F

kB
-1

0

N
F

kB
-9

Kb
-2 +20

Kb
-2 +20

Kb
-2 +20

Kb

2

4

6

8

1.0

1.2

0

N
F

-κ
B

-lu
ci

fe
ra

se
 a

ct
iv

ity
 

shRNA:

Fig. 2. Mechanism of JQ1 toxicity in ABC DLBCLs.
(A) Heat maps of BRD4 ChIP-seq in HBL1 and LP1
cells, after 3-h treatment with either DMSO or 500
nM JQ1. For each cell line, heat maps were ranked
based on BRD4 occupancy in the DMSO sample and
peaks were centered on a ±2-kb window from their
apex. See Materials and Methods for details. (B)
Genes down-regulated by JQ1 in the HBL1 ABC
DLBCL line were selected (less than −1 log2 fold
change, at least two out of four time points), and
heat maps generated to compare the effect of JQ1
treatment among HBL1 and LP1 cells. (C) Top
enriched signatures among genes down-regulated
by JQ1 in the HBL1 cells were selected. Enrichment
ratios are shown for both HBL1 and LP1 cells. See
Table S2 for a detailed signature definition. (D)
Relative activity of an NF-κB–dependent luciferase
reporter in the indicated ABC DLBCL lines treated
overnight (16 h) with either DMSO, JQ1, or the IKKβ
inhibitor MLN120b. (E) Relative activity of an NF-κB–
dependent luciferase reporter in HBL1 and TMD8
cells, after induction of either control shRNA or
BRD4 shRNA for the indicated time points. (F ) Top
enriched signatures among genes down-regulated
after both BRD2 and BRD4 knockdown were se-
lected. Enrichment ratios are shown for shBRD2,
shBRD4, and shBDR2+shBRD4 combined analyses.
See Table S3 for details. Error bars represent SEM of
triplicates. For signature enrichment analyses, error
bars represent an estimate of the SE. See Materials
and Methods for details.
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ABC DLBCL lines from JQ1 toxicity (Fig. 3H, Left). This effect
was not due to a general prosurvival effect of dominant active
IKKβ because this isoform was unable to rescue ABC DLBCL
cells from the toxicity of the MYC/MAX dimerization inhibitor
10058-F4 (21) (Fig. 3H, Right). Together, these data suggest that
a major aspect of JQ1 toxicity in ABC DLBCL is its ability to
attenuate IKKβ and NF-κB activity.

JQ1 Synergizes with Ibrutinib in Killing ABC DLBCL Lines. Given the
ability of JQ1 to inhibit IKKβ, we explored whether it would
synergize with other drugs to kill ABC DLBCL cells. To this end,
we used a high-throughput drug screening platform to test pairs
of compounds at various doses to identify synergistic combina-
tions (22). We interrogated a library of 466 targeted agents that
are either approved or are in early stages of development for
cancer therapy. In the initial screen, we combined in a matrix
format six serial dilutions of JQ1 with six serial dilutions of each
library compound, and measured the effect on viability of the
TMD8 ABC DLBCL line after 48 h. JQ1–drug interactions were
ranked according to the “excess over the highest single agent”
(HSA) method, a standard method used to discover syner-
gistic combinations (23) (Fig. S4A, full screen results are avail-
able at https://tripod.nih.gov/matrix-client/rest/matrix/blocks/222/
table). The highest scoring JQ1 interacting agent was SPC-839
(NCGC00161703), a quinazoline IKKβ inhibitor (24). Other
high-ranking compounds included the BTK kinase inhibitor

ibrutinib (#4) as well as multiple inhibitors of the PI (3) kinase/
mTOR pathway. A secondary 10 × 10 matrix screen confirmed
strong synergistic toxicity of JQ1 plus SPC-839 (Fig. 4A) or
ibrutinib (Fig. 4B), as evidenced by isobologram analysis of via-
bility data. Moreover, these drug combinations synergized in
the induction of apoptosis, as assessed by a luminescence-based
caspase 3/7 activation assay (Fig. S4 B and C).
We expanded the analysis of JQ1/ibrutinib synergy to a panel

of ABC DLBCL, GCB DLBCL, and multiple myeloma lines, all
of which were killed by JQ1 treatment alone (Fig. S4D). To il-
lustrate the synergistic effects of this combination, we normal-
ized data from 96-h viability assays relative to the effect of JQ1 as
a single agent (Fig. 4C). In these plots, a shift of the JQ1 dose-
response curves toward a lower IC50 compared with the ibrutinib-
only curves indicates greater toxicity of the combination than
either agent alone. We observed synergistic toxicity of the JQ1/
ibrutinib combination in three ABC DLBCL lines but not in the
GCB DLBCL or myeloma lines (Fig. 4C). Moreover, JQ1 and
ibrutinib synergized in blocking IKK activity, as indicated by
stabilization of the IκBα-luciferase reporter (Fig. 4D).

Efficacy of BET Inhibition Plus Ibrutinib in an ABC DLBCL Xenograft
Model. We next investigated the effect of BET protein inhibition
in a xenograft model of ABC DLBCL, using the BET inhibitor
CPI203, which is structurally related to JQ1 and has a similar
toxicity spectrum (Fig. S1B), but has a better bioavailability
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profile in mice (25). Like JQ1, CPI203 synergized with ibrutinib
in the killing of the ABC DLBCL lines in vitro (Fig. S5A). As
a single agent, CPI203 produced significant, but not complete,
inhibition of DLBCL tumor growth when mice were injected i.p.
twice daily (5 mg/kg) (Fig. 5A). To explore the potential synergy
between CPI203 and ibrutinib in this model, we used ibrutinib at
a dose (2 mg/kg) that caused only minimal tumor inhibition (Fig.
5B, blue line). In combination with 5 mg/kg CPI203, this dose of
ibrutinib produced full inhibition of tumor growth, illustrating the
potency of this combination (Fig. 5B, green line). BET protein
inhibition by CPI203 was well tolerated by the mice, causing only
a modest weight loss, and the combination with ibrutinib did not
cause additional toxicity (Fig. S5B). Notably, the observed in vivo
toxicity of CPI203 and ibrutinib was associated with inhibition of
NF-κB activation, as evidenced by decreased mRNA expression
levels of two NF-κB target genes, IL6 and IL10, and the drug
combination reduced the expression of these cytokines to almost
undetectable levels in all tumors (Fig. 5C).

Discussion
Our mechanistic analysis of BET inhibitor toxicity in ABC
DLBCL revealed a role for BET proteins in promoting onco-
genic kinase activity of IKK, thereby sustaining ABC DLBCL
viability. These observations were reinforced by our high-
throughput combinatorial drug screen, which revealed strong
synergy between the BET inhibitor JQ1 and multiple signal
transduction inhibitors that target signaling pathways leading to
IKK activation in ABC DLBCL. Most notable was the combi-
nation of JQ1 with the BCR pathway inhibitor ibrutinib, which
synergized with BET inhibitors to kill ABC DLBCL cells and to
prevent ABC DLBCL xenograft growth.
Our initial hypothesis was that BET inhibitors would be toxic

to ABC DLBCL cells due to a direct negative effect on the
transcription of NF-κB target genes, based on previous work
suggesting this mechanism of action in macrophages (11).
However, our analysis unexpectedly uncovered an influence of
nuclear BET proteins on cytoplasmic IKK signaling. JQ1 down-
regulated several gene expression signatures in ABC DLBCL
that are induced by oncogenic signaling pathways that activate
IKK. The effect of JQ1 on gene expression signatures of MYC
activity, which is a major reason for its toxicity in myeloma cells,

was much less pronounced in the HBL1 ABC DLBCL lines than
in the LP1 myeloma line. JQ1 also inhibited the expression of
many other genes in ABC DLBCL, for example, the lymphoid-
restricted coactivator OCA-B (POU2AF1), as previously noted
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Fig. 5. Combination therapy in a xenograft model of ABC DLBCL. (A) Human
TMD8 ABC DLBCL cells were established as a s.c. tumor in NOD/SCID mice and
treated by i.p. injection with either vehicle or BET Inhibitor CPI203 (5 mg/kg).
Mice were treated for 21 d, and tumor growth was measured as a function of
tumor volume. (B) Human TMD8 ABC DLBCL cells were established as a s.c.
tumor in CB17 SCID mice and treated by i.p. injection with vehicle, BET in-
hibitor CPI203 (5 mg/kg), BTK inhibitor ibrutinib (2 mg/kg), or with a combi-
nation of CPI203 and ibrutinib. Mice were treated for 12 d, and tumor growth
was measured as a function of tumor volume. (C) Total RNA was extracted
from xenograft biopsies. Human IL6, IL10, and MYC mRNA levels were
measured by TaqMan RT Q-PCR. For each gene, the relative abundance was
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(18). Notably, ectopic expression of a dominant-active isoform of
IKKβ partially rescued ABC DLBCL cells from JQ1 toxicity,
whereas ectopic provision of MYC did not. Thus, although JQ1
has pleiotropic effects on gene expression in ABC DLBCL, its
effect on IKK activity and NF-κB–dependent transcription con-
tributes significantly to its toxicity.
Several non-mutually exclusive mechanisms may account for this

observation. One model would suggest that BET inhibitors reduced
IKK activity in ABC DLBCL by decreasing the transcription of
genes encoding signaling proteins that function upstream of IKK.
The BET proteins are highly enriched in transcriptional regulatory
domains known as SEs, which control expression of key tissue-
specifying genes (26). Indeed, SEs have been identified in DLBCL
cells near genes encoding lymphoid-restricted transcription factors
(18). ABC DLBCLs rely on constitutive signaling emanating from
the BCR or from MYD88, and each pathway uses a cascade of
kinases and signaling adapters to activate IKK. By gene expression
profiling, the expression of genes encoding signaling proteins in the
BCR or MyD88 pathways declined modestly or not at all following
JQ-1 treatment (Fig. S6 A and B). Nonetheless, the combined
transcriptional down-regulation of these genes might still result in
the observed potent inhibition of IKK activity. A second possibility is
that BET proteins might act in the cytoplasm and modulate signaling
by binding to acetylated proteins in the pathways upstream of IKK
in ABC DLBCL. This possibility seems remote because a careful
fractionation of nuclear and cytoplasmic proteins from ABC
DLBCL cells revealed no more BRD4 in the cytoplasm than could
be accounted for by contamination with nuclear components, as
assessed by histone H3 immunoblotting (Fig. S7 A and B). A final
possibility is that BET proteins may mediate “inside-out” signaling
from the nucleus to the cytoplasm that modulates IKK activity.
Precedent for this type of signaling comes from analysis of DNA
damage-induced activation of IKK, which relies on ATM-dependent
phosphorylation of nuclear IKKγ (NEMO) (27). However, an
inhibitor of ATM kinase that blocks DNA damage-induced IKK
activation had no effect on IKK activity or the viability of ABC
DLBCL cells, demonstrating that any potential inside-out signaling
in these cells is mechanistically distinct (Fig. S7 C and D).
Irrespective of mechanism, our studies have important impli-

cations for the clinical development of BET inhibitors in ABC

DLBCL. Most importantly, the ability of BET inhibitors to inhibit
oncogenic NF-κB activity in ABCDLBCLmakes their therapeutic
development for the treatment of this disease highly rational, and
suggests a measureable endpoint to gauge their pharmacodynamic
efficacy. BET inhibitors strongly decreased expression of the NF-
κB target genes IL6 and IL10 in ABC DLBCL xenografts, raising
the possibility that levels of these cytokines in the blood could be
used to monitor BET inhibitor activity. Our work further argues
for early evaluation of combinations involving BET inhibitors and
BCR pathway inhibitors such as ibrutinib. Given the pleiotropic
role of BET proteins in transcriptional regulation, BET inhibitors
could have on-target side effects that might limit the doses that
can be achieved clinically. By pairing a BET inhibitor with ibru-
tinib, lower doses might yield equivalent antitumor responses
while minimizing general toxicity. On the flip side, ibrutinib has
shown efficacy in ABC DLBCL, but responses are not durable in
most patients, highlighting the need to develop drug combinations
to improve ibrutinib efficacy (reviewed in ref. 28). Importantly,
combined treatment of mice with the BET inhibitor CPI203 and
ibrutinib did not cause any additional toxicity beyond the mild
effect of CPI203 on animal weight, suggesting that this drug
combination may be tolerated clinically.

Materials and Methods
For shRNA toxicity screen, cell lines were engineered to express an ecotropic
retroviral receptor and the bacterial tetracycline repressor (6). For the high-
throughput drug combination screen, viability was assessed by CellTiterGlo
(Promega) (22). All animal experiments were carried out in accordance with the
National Cancer Institute Animal Care and Use Committee guidelines. For a de-
tailed explanation of all of the methods, please see SI Materials and Methods.
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